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LIQUID CRYSTALS, 1989, VOL. 4, No. 3, 223-240 

Invited Article 
BCnard convection in liquid crystals 

by P. J. BARRATT 
Department of Mathematics, University of Strathclyde, Glasgow, GI  IXH, 

Scotland 

(Received 30 August 1988; accepted 2 September 1988) 

This article presents a review of investigations concerning the onset of Benard 
convective instabilities in layers of nematic and cholesteric liquid crystals. Special 
emphasis is given to the role of a heat focusing mechanism which gives rise to 
interesting instability phenomena not seen in conventional isotropic liquids. 
Theoretical predictions of continuum theory are compared with experimental 
observations, wherever possible, and suggestions for further investigations are 
included. Although the linear theory is now well understood, at least for nematics, 
the non-linear theory has received comparatively little attention. It appears that 
the development of non-linear analyses for such systems may lead to important 
information concerning multicritical phenomena and the transition to turbulence 
in non-equilibrium systems. 

1. Introduction 
Over the last two decades there has been an increasing interest in liquid crystal 

research and a considerable advance in our knowledge of a rich variety of novel effects 
associated with these materials. This is especially true for those of nematic type. Such 
progress has been largely due to the availability of a viable macroscopic theory and 
the motivation of technological applications. The books by de Gennes [ I ]  and 
Chandrasekhar [2] give detailed accounts of the physical properties of these trans- 
versely isotropic liquids and the review articles by Ericksen [3] and Leslie [4] provide 
comprehensive accounts of the continuum theory pertinent to this article. 

The aim is to review the investigations concerning the occurrence of Benard 
convective instabilities in nematic and cholesteric liquid crystals. The classical 
Rayleigh-Benard problem is that in which a sample of newtonian fluid contained 
between two large horizontal flat plates is subjected to an adverse thermal gradient. 
Provided the temperature difference between the plates is less than some critical value, 
the system remains in equilibrium and there is no flow. However, as this critical value 
is exceeded the onset of stationary convection is observed. This simple hydrodynamic 
instability occurs when the buoyancy force due to thermal expansion near the lower 
plate is sufficient to overcome the opposing viscous shear force. The intricate thermo- 
mechanical coupling between flow, temperature and orientation of the anisotropic 
axis exhibited in liquid crystals allows the possibility of interesting phenomena not 
seen in conventional isotropic liquids. In particular, novel instabilities are driven by 
a heat focusing mechanism which is not available in a classical fluid. As a result 
threshold values for stationary convection are drastically reduced and instability can 
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224 P. J. Barratt 

occur when heating is from above as well as below. In addition, oscillatory convective 
instabilities with inverse bifurcation and hysteresis effects are possible. 

Several authors have conjectured that thermal gradients can directly influence the 
orientation of the anisotropic axis or director. For example, in a vertical thermal 
gradient, Stewart [5] reports that 4,4‘-dimethoxyazoxybenzene (PAA) adopts a 
vertical orientation when heating is from below but a horizontal orientation when 
heating is from above. Rajan and Picot [6] review such literature on thermal transport 
phenomena in liquid crystals prior to about 1971. For reasons given by Leslie [4], 
support for this point of view based on thermal conductivity measurements is some- 
what debatable. In fact continuum theory appears to be in conflict with these observa- 
tions since it yields solutions in which thermal gradients do not influence alignment 
in nematics. Fortunately investigations of thermally induced convective motion in 
nematic layers suggest a possible alternative explanation of the experimental observa- 
tions. Moreover, since predictions of the theory agree rather well with the more recent 
and better controlled empirical investigations, it seems that unambiguous evidence of 
thermal gradients influencing the alignment directly is required before a revision of 
the theory is attempted. 

In this article we describe the development of the study of thermal convection in 
liquid crystals since about 197 1, comparing theoretical predictions with the available 
experimental evidence wherever possible. Since studies of thermal convective instabili- 
ties in cholesterics are comparatively few in number, this review, with the exception 
of $9, is entirely concerned with thermal convection in nematics. Furthermore the 
number of non-linear analyses is rather small and so, apart from $8, all stability 
analyses presented here are linear. Finally, unless stated otherwise, numerical results 
given throughout this article are obtained by employing the available data for the 
material 4-methoxybenzilidene-4’-n-butylaniline (MBBA). This is somewhat regret- 
table in view of the variety of more stable nematic materials now available but 
unfortunately virtually all calculations have employed such data. 

2. The Ericksen-Leslie equations 
Throughout this article it is assumed that the continuum equations governing the 

behaviour of incompressible nematic and cholesteric liquid crystals are those 
proposed by Ericksen [7] and Leslie [8, 9, 101. Their theory derives equations for 
determining the velocity field v, the director n and temperature T, n being a unit vector 
denoting the orientation of the anisotropic axis. Employing the notation of Leslie’s 
review article, the appropriate equations in Cartesian tensor form are the constraints 

= 0, n,nI = 1 (2.1) 

together with the balance laws 

(2.2) 

ac, = pi  + (”) - - - a w  + ti + G,,  
d n i , j , j  dni (2.3) 
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where a superposed dot denotes a material time derivative, eVk is the alternating tensor 
and 

c j  = a,nkh’,Ak,ninj + a2njK. + C13niq -k ~t4Aij -k a,njnkA,; -!- a,jn;n,A,i 

+ a7eipqnp Tqnj + useijqnp Tqni, (2.5) 

g .  = - 7 1 4  - Y 2 A i j n j  - Y 3 e i j k n j T k ,  (2.6) 

qi = .,Ti + K2ninkTk -k K3eijknjNk + ‘c4e,jkn,Akpnp, (2.7) 

2A. .  u = Vj,j  f Vj,i ,  2 4  = 2hi + (Vk,i - vi,k)nk. (2.8) 

- 

Herep and y are arbitrary functions for the pressure and director tension arising from 
the constraints (2.1), e is the density and 0 is a positive inertial constant. For reasons 
given by Pieranski, Brochard and Guyon [ 1 11, the director inertia term oiii in equation 
(2.3) is considered to be negligible. F and G represent any external body force and 
generalised body force acting, respectively. In calculations we assume that such forces 
arise only from gravity or an applied uniform magnetic field so that employing 
Ericksen’s hypotheses [ 121 

F = -eg 9 G = xa(B.n)B, (2.9) 
where g is the gravitational acceleration, B is the magnetic flux density and za is the 
anisotropic part of the magnetic susceptibility. The stored energy per unit volume W 
is assumed to take the form 

2 w  = 2Wo + KI(nk,k)’ + K’(eijknink,j + r)’ + &ni,knkni,/n/ (2.10) 

and the heat supply function r in equation (2.4) is assumed to be zero throughout this 
paper. Material parameters arising in the theory depend only upon temperature and 
must satisfy the conditions 

y 1  = a3 - a2, y z  = - a5, y3  = a, - a7 .  (2.1 1) 

As is common in calculations, we also employ the constraint proposed by Parodi [13], 
namely 

a2 + a3 = a6 - a5. (2.12) 

Following Parodi’s arguments, Prost [ 141 has proposed the additional constraints 
ic3 = a8 - a7, lc4 = a7 + a,. (2.13) 

The material parameters a, a7, a,, y 3 ,  icj , lc4 and z are peculiar to cholesterics and are 
all identically zero for nematic liquid crystals. Finally we note that the pitch P of a 
cholesteric is related to z by 

P = 271/121. (2.14) 

3. The linearized equations for BCnard convection in nematics 
We are concerned with the stability of a thin layer of nematic liquid crystal 

subjected to a vertical thermal gradient. The sample is contained between two large, 
horizontal flat plates with the upper plate occupying the plane z = h being held at a 
temperature T2 while the lower plate occupies the plane z = 0 and is held at a 
temperature TI. Two particular arrangements with strong anchoring at the bound- 
aries have received most attention. In one a uniformly parallel director orientation 
obtains at the boundary (the planar problem) while in the other n is perpendicular to 
the bounding surfaces (the homeotropic problem). Unless stated otherwise it is 
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226 P. J. Barratt 

assumed throughout that any applied magnetic field is aligned parallel to the initial 
uniform orientation of the director. If n takes the constant value 

no = (cos Bo,  0, sin 0,) (3.1) 

n = no, v = 0, T = TI + PZ, (3.2) 

q3 = - k(6o)fl, k(60) = -IC, - 1c,sin~0, (3.3) 

on both z = 0 and z = h, a simple equilibrium solution of equations (2.1)-(2.4) is 

where f l  is the constant temperature gradient (T, - T,)/h. From equation (2.7) we 
can define a thermal conductivity through the relation 

so that 

k, = k(0) = - I C ~ ,  k,, = k(n/2)  = - K I  - I C ~ ,  k, = kl, - k ,  = - I C  2 ,  

(3.4) 
where k,, and k ,  are the conductivity constants parallel and perpendicular to the 
director n, and k, is the anisotropic part of the thermal conductivity. It is this constant 
k,, that has a significant role in the onset of stationary convection in nematics. Since 
k,  is positive for all known nematics it is assumed throughout the article, unless stated 
otherwise, that k,, > 0. Physically this means that heat is more readily conducted 
along rather than perpendicular to the director axis. 

Now consider the equilibrium state defined by equations (3.1) and (3.2) to be 
disturbed by a small amplitude velocity field, v, associated with which is a director 
field, no + a, and a temperature field, T + S. In addition there is a pressure field, 
p + 6, and a director tension field, - x‘, B2 + 9, where p and - xu B2 are the respective 
equilibrium values and B is the magnetic flux density. Adopting the Boussinesq 
approximation [ 151 which neglects the variation of material parameters with tem- 
perature except where associated with gravity, a linearisation of equations (2.1)-(2.4) 
yields the system of linear equations 

v,.: = 0, nlfi, = 0, (3.5) 

as 
- at + P q  = - I C , S ^ , ~ ~  - - P~~,(k,nPfi~,~ + (3.8) 

for the perturbation variables v, A,  i, $ and 9. Here a’ is the thermal expansion 
coefficient, k ,  is the unit vector in the z direction and 
2Aijk,,, = 2a,nynpn:n: + (a, + a,)diknyn:, + (a3 + a,)d,,npn~ 

(3.9) I + ~ 4 6 i j J k m  + (a, - a,)bijnin;, 
CiiR,,, = K2dijdhn, + ( K ,  - K2)djkdim + (K3 - K,)6iJn:nL, 

Bjjk = a,d,n: + cc3djknY, 2Djjk = (yI - y2)dijn: - (y, + y2)dikny, 
where 6,; is the Kronecker delta, and IC, and IC, now denote thermal diffusivities rather 
than conductivities. Equations (3.5)-(3.8) are the effective starting points for most of 
the linear analyses described in this article and they illustrate the rather complicated 
coupling of perturbation variables that is responsible for driving thermal instabilities 
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not found in isotropic liquids. Strong anchoring of the director at the boundary is 
usually assumed so that, unless stated otherwise, the boundary conditions on z = 0 
and z = h are 

v = o ,  f i = o ,  i = o .  (3.10) 

4. A one dimensional model 
In an initial investigation of the planar problem, Dubois-Violette [ 161 employs a 

one dimensional analysis which has the merit of being very simple and yet clearly 
illustrates the heat focusing mechanism that drives the stationary convective instabil- 
ity in thin layers of nematic liquid crystal. Consider the planar equilibrium configur- 
ation to be disturbed by perturbations of the form 

A = (0, 0, n)exp(wt), v = (0, 0, v)exp(ot), s  ̂ = sexp(ot)  (4.1) 

where n, v, s are functions of x only. The constraints (3.5) are clearly satisfied 
identically while the balance equations become 

a2 an 
QWV = ega’s + (ylb/2) - + a2w - 9  ax2 ax 

a2 an  
ax ax os + BV = k 7 + bk,--, (4.4) 

where ylh = a4 + ag - a2.  
Setting o equal to zero and 

(n, v, s) = (ino, vo, s0)exp(iqx) (4.5) 

in equations (4.2)-(4.4), the determinantal condition for a non-trivial solution yields 
an expression for the critical threshold gradient given by 

P, = B o i l 1  - (.2kU/EC7)/(1 + X,B21K3Y2))> (4.6) 

where Po is a typical threshold value for an isotropic liquid. For MBBA azk,/K3 is of 
order lo2 and hence, in the absence of an applied magnetic field, threshold values are 
significantly lower than those for isotropic liquids having similar physical properties. 
This means that convection may occur in nematic layers whose thickness is consider- 
ably less than that necessary for convection in newtonian fluids. The term Pk,dn/dx 
in the heat conduction equation (4.4) represents a combining of the effects of distor- 
tion in alignment with the anisotropy in the thermal diffusivity to produce a so called 
heat focusing effect. It is the coupling between this term and the viscous torque 
{(y, - y2)/2)dv/dx in the angular momentum equation (4.3) that drives the instabil- 
ity. Further the sign of k ,  would appear to be of crucial importance. Assuming k, is 
positive stationary convection is expected to occur in planar samples when heating is 
from below. However if ku were negative one would have to heat the upper plate! 

An explanation of the destabilizing effects of this heat focusing mechanism is 
provided by a study of the relaxation times for the various perturbation variables. 
Examining solutions of the form 

(v, n, 3) = (vdt), no(t), so(t>>exp(iqx), (4.7) 
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228 P. J. Barratt 

the relaxation time constants for fluctuations in flow, orientation and temperature are 
found to be given by 

At the threshold, where do, h0 and So all vanish 

q ( 1  + T,,/T,) = I ,  Ti = -yl/(k,cr2q2), T* = ( -a 'gp, . ) - ' ,  (4.9) 
t 

T, being a characteristic time associated with the destabilizing heat focusing mechan- 
ism. We note that T, T , / r2  is n4 times the critical Rayleigh number for an isotropic fluid 
having viscosity qb and thermal diffusivity k,, . For a 1 mm thick layer T,,/Ta is approxi- 
mately lo3 and it is this large ratio of characteristic times that is responsible for the 
substantial decrease in the critical threshold gradient and the corresponding critical 
Rayleigh number. From equations (4.6) and (4.8) it follows that a magnetic field 
applied parallel to the initial alignment is stabilizing. However if the field is applied 
perpendicularly across the sample with flux density B it is destabilizing with B2 being 
replaced by - B i .  

Despite the simplicity of the model and the fact that solutions of the form (4.7) 
do not satisfy the boundary conditions (3. lo), these results agree well qualitatively 
with the observations in planar layers reported by Guyon and Pieranski [17] and by 
Dubois-Violette, Guyon and Pieranski [18]. At threshold they observe TI  - T2 to be 
2.2"C and 15.5"C in 1 mm and 0.5 mm thick layers, respectively, when B is zero. The 
associated wavelengths are compatible with the estimate q = n/h which when used in 
the analyses [16, 181 yield results that agree reasonably well quantitatively with 
experimental observations. The latter paper describes an experimental study of the 
dependence of fl< upon the field strength, there being good agreement between 
observations and theoretical calculations using equation (4.6). In particular they find 
that I j, I increases (decreases) linearly with B 2 ( B f )  according to the empirical 
formulae 

AT,.(B) = AT(B = 0) , AT,.(BI)  = A T ( B ,  = 0) 

(4.10) 

where B,. is the Freedericksz transition value (n/h)(K3/~,)"' and AT = T2 - T I .  
A similar calculation for homeotropic alignment by Rajan [I91 yields 

0,. = PoAl - a3ka/K,). (4. I 1) 

For MBBA, I a3 k , /K ,  I is of order one and it follows that 8, x Po and 

To = (-Y,)/k,ad * (-?J,)lk,a2q2. 

This suggests that convection does not occur in homeotropic layers of order 1 mm 
thickness and observations by Pieranski, Dubois-Violette and Guyon [20] support this 
conclusion when heating is from below. However, they do observe a convective 
instability in such thin layers when heating is from above and report results in 
agreement with an empirical law analogous to that in equation (4.10), for an applied 
stabilizing magnetic field. To describe such phenomena, even qualitatively, it is 
obvious that a more general analysis than that employed here is required. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Invited Article: Benard convection in liquid crystals 229 

5. Stationary convection in planar and homeotropic layers 
A variety of methods have been employed in analysing the onset of stationary 

convection in both planar and homeotropic layers. Typically they examine stability 
with respect to disturbances of the form 

ii = (0, 0, n,)exp(imx + ot),  v = (u, 0, v)exp(imx + ot), 
S = sexp(imx + wt) (5.1) 

and 
fi = (n, 0, O)exp(imx + wt), v = (u, 0, v)exp(imx + or), 

respectively, where n, u, v, s are functions of 2.  To obtain threshold values for the 
onset of stationary convection, the principle of exchange of stabilities is adopted so 
that critical values are found by setting w = 0. For each value of m, a critical value 
&(m) is expected and that value having the smallest magnitude is called the critical 
thermal gradient f i ( .  

Currie [21] and Dubois-Violette [22] were the first to analyse both problems 
in some detail. With the aid of several rough approximations concerning the 
magnitudes of certain material parameters. Currie introduces the change of variable 
( = (22 - h)/h and reformulates the planar problem as that of solving 

subject to the conditions 

on i = 1 ,  where M = - h4~ga'k,y , /8a4K2rc, ,  a = mh/2 and D = d/d[. Employ- 
ing variational methods and a simple trial function he obtains the instability criterion 
for PAA as ATh3 < - 8 x cm3 "C. A similar calculation for homeotropic layers 
yields the instability condition ATh3 > 24 x 10-4cm3"C. Thus for convection to 
occur the lower plate must be heated in a planar layer but the upper plate in a 
homeotropic layer. 

Dubois-Violette [22] seeks Fourier mode solutions having a z dependence of the 
form exp(iZ,z). For a given mode with fi  and m fixed the condition for the resulting 
set of linear, homogeneous algebraic equations to have a non-trivial solution results 
in an  eighth order polynomial equation for the variable r, (_=l,/m). Expressing the 
perturbation variables as linear combinations of these eight solutions, the modes with 
wavenumber m which develop in the layer are found by solving the secular equation 
which results from satisfying the boundary conditions. Since an analytic solution is 
not practicable, she computes results for MBBA and these are in agreement with the 
conclusions of Currie [21]. In particular, critical values for a sample thickness of 
0.5 mm are found to be 

ATp = -21"C, mp = 30 and ATH = 39.8"C, mH = 28.8, (5.5) 
where subscripts p and H denote results pertinent to the planar and homeotropic 
problems, respectively. In the absence of an applied magnetic field, the linear 
equations indicate that fih4 is a universal constant so that ATp = -2.6"C and 
ATH = 5°C when h = 1 mm. These theoretical predictions agree well with the experi- 
mental observations by Guyon and Pieranski [17] and Dubois-Violette, Guyon and 
Pieranski [18] in planar samples and Pieranski, Dubois-Violette and Guyon [20] in 
homeotropic layers. 

Barratt and Sloan [23,24] attempt an analytic solution of the problem by employ- 
ing a Fourier series method used by Jeffreys [25]. They obtain an expression for the 

S = sexp(imx + wt) (5.2) 

(D2 - a2)4v + a4Mfiv = 0 (5.3) 

z, = Dv = (D2 - a2)'v = (D2 - a2)3v = 0 (5.4) 
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230 P. J. Barratt 

critical gradient in the form of a consistency condition which can be written symboli- 
cally as 

f ( a ,  R)  = 0, (5.6) 

where R is the Rayleigh number. Although this criterion is in the form of an infinite 
series, the convergence is so fast that an excellent approximation for the threshold is 
given by retaining only the first term in the series. Their results agree well with those 
of Dubois-Violette [22] and the available experimental evidence. 

Excellent pictorial descriptions of the physical stabilizing and destabilizing forces 
present in both configurations when heating is from either above or below can be 
found in [16], [18], [20] and [22]. Here we give only a brief verbal account of the 
physical process. For both equilibrium configurations, the heat flux vector is perpen- 
dicular to the bounding plates. In the event of a sinusoidal fluctuation in alignment, 
the associated perturbation in heat flux is in the horizontal direction and so the heat 
flux vector is no longer normal to the plates. This is due entirely to the heat focusing 
effect and the result is the formation of alternate warmer and cooler regions. Under 
the influence of buoyancy forces these regions tend to move up or down, respectively. 
Induced viscous torques r, and r2, associated with the vertical and horizontal 
components of the flow field, respectively, then act on the director and it is the 
resultant viscous torque that either stabilizes or destabilizes the system. In a planar 
layer 

rl = a2av/ax and r, = cr,au/az, 

r, = -a,au/dz and r2 = -g3aV/ax. 

while in a homeotropic layer 

Since I a2 1 S I a j  1 for MBBA it is evident that 1 r, 1 % 1 r2 1 for circular rolls. The one 
dimensional model of the previous section therefore includes the dominant viscous 
torque in the planar problem but neglects it in the homeotropic problem. This 
explains why the one dimensional model fails to describe the situation in the latter 
problem while yielding fairly accurate results for the former problem. 

Using a Galerkin method [26], Verlarde and Zuniga [27] demonstrate that 
stationary convection is possible in a planar layer heated from above. This requires 
I r, I > I r, I with the appearance of elongated rather than circular rolls. Although AT, 
is so large as to be impractical for layers of order 1 mm thickness, it might be possible 
to observe this effect in relatively thick samples. In addition they examine more fully 
than earlier studies the effect of stabilising magnetic fields upon threshold values. 
When heating is from below in a planar sample, they find that lAT,.I initially increases 
linearly with B2 before becoming asymptotic to a value two or three times smaller than 
the corresponding value for isotropic liquids. This occurs when B z 0.06T in a 5 mm 
layer. For a homeotropic layer heated from above they find that AT, increases rapidly 
with B until the instability is effectively suppressed by a field of about 0.03Tin a 5 mm 
layer. Barratt and Manley [28] obtain accurate numerical results for the variation of 
threshold values with field strength for the planar problem which confirm the predic- 
tions of Velarde and Zuniga [27]. However they find that the asymptote value is 
reached at about 0.16T. 

Other attempts at solving these problems include those of Miyakawa [29] and 
Askar [30]. Miyakawa considers the propagation of infinitesimal disturbances in 
homeotropic nematics subject to a thermal gradient and predicts the onset of convection 
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from an examination of their behaviour. Askar examines both problems but employs 
the rather unrealizable free-free boundary conditions in an attempt to simplify 
calculations. 

This analysis restricts consideration to a class of disturbances dependent on only 
one horizontal spatial variable. Since predictions agree rather well with observations 
we might question the necessity of examining stability with respect to disturbances 
that are periodically dependent on both horizontal spatial variables. Fraser [31] and 
Barratt and Zuniga [32] examine the stability of planar and homeotropic layers with 
respect to these more general disturbances and obtain results that suggest that the 
critical threshold values remain unchanged. 

Finally, Barratt, Coles and Hodson [33] relax the assumption of an initial uniform 
thermal gradient and consider the initial temperature to be a linear piecewise function 
so that 

where 0 < 6 Q 1. This may be viewed as a simple model to describe the effect of 
transient heating or cooling of the lower boundary. Such a process must occur initially 
to obtain a uniform thermal gradient across the layer. Reformulating the problem in 
variational form they show that Ip,I varies significantly with 6, there being a 20 per 
cent decrease as 6 varies from 1 to about 0.7, where it takes its smallest value. This 
behaviour is similar to that found by Nield [34] and Currie [35] for newtonian fluids. 

6. Further studies in stationary convection 
The effect of a change in the initial equilibrium alignment upon threshold values 

and the type of roll instability expected is of some interest. To this end Barratt and 
Sloan [36] consider the onset of stationary convection in a horizontal layer where the 
initial equilibrium configuration is a twisted orientation pattern in which the aniso- 
tropic axis lies parallel to the bounding plates but changes direction uniformly with 
distance between them. Seeking solutions of the form 

v = (vI , 02 ,  iv,) exp i(lx + my), ii = (in,, in2, n3 )  exp i(lx + my), 

j :  = isexpi(/x + my), (6.1) 
where v,, n,, s are functions of z, they obtain results by direct numerical integration 
of the resulting linear differential equations using orthornormalization. Threshold 
gradients are found to be rather insensitive to the amount of twist in the sample with 
values being similar to those obtained for the planar problem. However the shape of 
the cellular instability pattern changes appreciably with twist so that at the onset of 
convection m//  - tan (8,/2), where 8, is the total twist in the layer. The parameter pc h4 
appears to be almost a universal constant. 

Barratt and Bramley [37] examine convection in obliquely aligned nematic layers 
where the initial uniform orientation of the director lies in the xz plane and makes an 
angle B0 with the positive x axis. They investigate the onset of two particular types of 
instability in 1 mm thick layers. One is a Y axis roll with 

a = i {nl, 0, n , }  exp (imx), v = {vl,  0, v, } exp (imx), 3 = s exp (imx) (6.2) 
and the other is an X axis roll with 

ii = {al, in,, n3}exp(imy), v = (q, iv2, o,}exp(imy), s  ̂ = s exp(imy), (6.3) 
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where ni, zli and s are functions of z .  In the absence of a magnetic field, they predict 
a Y roll instability when heating is from below and an X roll instability when heating 
is from above. Threshold magnitudes increase as 0, moves away from 0 or 71/2 when 
heating is from below or above, respectively, implying that the heat focusing effect 
decreases as the tilt from the planar or homeotropic alignment increases. Again Pch4 
is found to be almost a universal constant. Investigating the effect of a stabilizing 
magnetic field in 5mm layers, Barratt and Bramley [38] show that, when heating is’ 
from above, a transition from an X roll to a Y roll occurs at a value O,(H) of the tilt 
angle 8,. The reason for this transition is the inhibiting effect on the onset of instability 
of a magnetic torque associated with the three dimensional nature of an X roll which 
is absent in the two dimensional Y roll. These predictions agree tolerably well with the 
very limited experimental evidence provided by Guyon, Pieranski and Boix [39]. 
However they observe a pairing of rolls with different wavelengths which results in a 
pattern of alternate wide and narrow cells and, as yet, no quantitative analysis of this 
phenomenon has been attempted. 

A free surface effect of some importance arises in the so called BCnard-Marangoni 
problem. In this the upper boundary is a free surface where a thermal fluctuation 
induces a surface traction arising from the variation of the surface tension cr with 
temperature. This phenomenon has a destabilizing influence upon the system and is 
called the Marangoni effect. Employing the one dimensional analysis of 94, Guyon 
and Velarde [40] show that, in general, critical values of the Marangoni number M 
and the Rayleigh number R satisfy the condition 

= 1. 
M R 

M,.(R = 0)  -k R,.(M = 0) 

where 

M - flh*(&/aT)/(kllij), 

R = - a’egflh4/(kllVlb) 

and i j  is an average viscosity. Velarde and Zuniga [27] investigate the stability of 
planar and homeotropic layers with respect to disturbances of the form in equations 
(5.1) and (5.2), respectively, and obtain results for critical values that agree well with 
the relation (6.4). Urbach, Rondelez, Pieranski and Rothen [41] report observations 
of the Marangoni effect in nematic droplets subject to heating by a hot spot and 
present a theoretical calculation of this related problem which seems to be in good 
agreement with the observations. 

A problem related to that of Rayleigh-Benard convection is one in which a 
thermal gradient is applied radially across a sample of nematic liquid crystal con- 
tained in a cylindrical annulus rotating with constant angular velocity wo about its 
vertical axis. Here the effect of the centrifugal buoyancy force is rather similar to that 
of the gravitational buoyancy force in the Benard problem with wir replacing g .  
Carrigan and Guyon [42] describe such an experiment and when no is radial their 
observations are similar to those for the gravitational instability with the axis of the 
rolls being vertical. When no is vertical they demonstrate the influence of the Coriolis 
force upon the alignment of the roll axis, this axis being vertical when the Coriolis 
force is dominant. They also report a first order phase transition with hysteresis effects 
in this case. Using the narrow gap approximation and assuming the annulus to be very 
long, Barratt and Zuniga [43] give a detailed numerical linear stability analysis of this 
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latter arrangement. Their results suggest that a Taylor-Couette instability (azimuthal 
rolls) rather than the Taylor-Proudman instability (axial rolls) occurs, which seems 
to be in conflict with the observations of Carrigan and Guyon [42]. Although reasons 
are suggested for this apparent conflict, it would appear that further analysis and 
experimentation is necessary to clarify the situation. 

Finally Horn, Guyon and Pieranski [44], Kini [45] and Guyon, Pieranski and Boix 
[39j examine the effect of free convection in tilted planar and homeotropic layers. 

7. Oscillatory convection in homeotropic nematics 
The onset of stationary convection in homeotropic nematics heated from above 

is driven by a strongly destabilizing heat focusing effect. An obvious question which 
poses itself is whether convection is possible when heating is from below and the heat 
focusing effect is strongly stabilizing. Of course, in this event, there is the usual 
destabilizing buoyancy force due to the presence of a downward thermal gradient. In 
the absence of an applied magnetic field, equation (4.8) indicates that the relaxation 
time for director perturbations T, is much greater than that for thermal fluctuations 
q. Motivated by this observation, Lekkerkerker [46] was the first to investigate the 
possibility of oscillatory convective modes in nematic layers. 

Considering a flow field in which 

v, = v (q )  cos ot cos q,x sin q,z, (7.1) 

K,qz < < ( K I  + Kc, )q2 ,  (7.2) 

where the frequency w satisfies the inequality 

it follows from the field equations that the corresponding non-zero components in the 
perturbations of alignment and temperature have the form 

ri, = n(q, o) sin wt sin q,x sin qzz, s  ̂ = s(q) cos ot cos q,x sin q2z. (7.3) 
It should be noted that the inequality (7.2) requires the relaxation time T, to be small 
compared with the relaxation time T,. When this is the case it follows from equations 
(7.1) and (7.3) that fluctuations in flow and temperature remain in phase while those 
in alignment lag 90" behind. This allows the possibility of a distortion to be initiated 
when the destabilizing buoyancy force exceeds the stabilizing viscous torque which is 
expected to occur at a threshold comparable with that for stationary convection in 
isotropic liquids. However, as time progresses the strongly stabilizing heat focusing 
force acts to restore the initial alignment and in the process the director overshoots 
its equilibrium value and an oscillatory motion results. It is the competition between 
a stabilizing effect with a long relaxation time and a destabilizing effect with a short 
relaxation time that allows the possibility of oscillatory or overstable convective 
modes and this is due to the mechanism of dephasing the two effects. This 
phenomenon of dephasing a stabilizing effect and thus producing the possibility of 
overstability is present in other systems, as is illustrated by the Soret effect in binary 
mixtures [47]. 

Seeking a solution in which perturbation variables are expressed as a super- 
position of Fourier modes, Lekkerkerker [46] was the first to predict that the principle 
of exchange of stabilities does not always hold for nematic liquid crystals in the 
presence of a vertical thermal gradient. He also indicates that a good approximation 
for the overstable threshold pp is given by 

(7.4) 6 4  2 eg.'PPh4 = vkq h /qx ,  
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where v is some average viscosity and 

k = (k,,qS + k,q3/q2 ,  

this being identical to the relation which yields the threshold for stationary convection 
in an isotropic liquid with viscosity v and thermal diffusivity k.  Setting qx = qz = 7t/h 

in equation (7.4) suggests that observation of oscillatory convection necessitates the 
use of comparatively thick layers with h = 5 mm. It is, therefore, not surprising that 
Pieranski, Dubois-Violette and Guyon [20] did not detect overstability in their experi- 
ments employing significantly thinner layers. 

Experimental support for Lekkerkerker's predictions was soon provided by 
Guyon, Pieranski and Salan [48]. Heating 5 mm thick layers of MBBA from below, 
they investigated the stabilizing effect of a vertical magnetic field upon both the 
threshold gradient and the nature of the instability. By increasing the magnetic field 
the relaxation time T, for fluctuations in orientation is effectively decreased by several 
orders of magnitude until T, and T, are of the same order. The heat focusing 
mechanism is then no longer dephased and the onset of stationary convection 
becomes a possibility. Employing the simple one dimensional analysis described in 54, 
Guyon, Pieranski and Salan [48] predict that the frequency of oscillations is a 
quadratic function of B2 which vanishes when the flux density is B ,  % 0*058T, 
whereupon a transition from oscillatory to stationary convection results. The model 
also predicts that IP,I increases linearly with B2 until the transition occurs and then 
decreases. The predictions of this simple model agree remarkably well with their 
experimental observations and also agree qualitatively with Lekkerkerker's results. 
However the experiments also exhibit the interesting phenomena of hysteresis effects 
and the occurrence of an inverse bifurcation. Unfortunately linear theory is unable to 
provide any information on these matters and a discussion of such topics is postponed 
to the next section. 

Rather more detailed linear analyses of overstability given by Lekkerkerker [49], 
Velarde and Zuniga [27], Barratt and Sloan [50] and Barratt and Manley [51] yield 
substantially the same qualitative results as those provided by the one dimensional 
analysis. However they also predict that for very large magnetic fields the heat 
focusing effect is virtually eliminated and the critical threshold attains an asymptotic 
value. Barratt and Bramley [38] allow for overstable modes in a detailed numerical 
investigation of convective instabilities in obliquely aligned 5 mm thick layers. Allow- 
ing for the effect of a stabilizing magnetic field, they show that only stationary 
convection is possible when heating is from below. However, when heating is from 
above the situation is rather complex, especially for values of Bo between 50" and 80". 
Here there are a variety of possibilities with transitions between X and Y roll 
instabilities and stationary and oscillatory instabilities. 

8. A non-linear approach 
Although linear analyses can predict critical values a t  which an instability is 

possible they provide no information as to how the instability develops as the 
threshold is exceeded. It is also obvious that they cannot decide whether finite 
amplitude perturbation solutions are possible for temperature differences smaller 
than those predicted by the linear theory itself. That is they cannot distinguish 
between the possibility of subcritical and supercritical phenomena. Such information 
can only be obained by retaining the non-linear terms in the analysis. 
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The relatively few non-linear analyses so far attempted all seek two dimensional 

v = (u, 0, v), T = TI + Bz + s and n = (cos8, 0, sine) 

solutions of equations (2.1)-(2.4) in which 

or (sine, 0, C O S ~ ) ,  (8.1) 
where 8 is the angle between the director and the initial alignment. The problem is to 
solve a set of partial differential equations 

LU = Nu, (8.2) 
where U --= (u, v, 6, s ) ~ ,  L is a linear and N a non-linear operator. Utilizing the series 
expansions 

m m 

(8.3) 

whereU(" = (ur ,  vI, el,  s l ) T ,  B, is constant and E is a small parameter, in equation (8.2) 
yields a set of partial differential equations 

L(B,)U(1' = 0, L(B,)U'"' = Y(") , m 3 2 .  (8.4) 
Here U(I) is the solution of the corresponding linear problem and Y(m) represents the 
non-linear terms. The adjoint operator L* is defined by the relation 

(LU,U*) = (U,L*U*), (8.5) 
where (. , .) denotes a suitable inner product. Hence, if L*(B,)U* = 0, the Fredholm 
alternative yields 

(Y'"', U*) = 0 (8.6) 
as a necessary condition for the existence of a bounded solution of equation (8.4) and 
it is this condition which determines the nature of the bifurcation. 

The first attempt at a non-linear analysis was presented by Dubois-Violette and 
Rothen [52] for the onset of stationary convection in planar samples. Since the 
corresponding linear problem does not have an amenable analytic solution, they 
consider the so called free-free problem with stress free boundaries. Although this is 
unrealizable in practice it has the advantage of having a rather simple analytic 
solution. After determining flc and the solution of the adjoint problem, they employ 
equation (8.6) with m = 2 and 3 to show that B, = 0 and B2 > 0, respectively, for 
a wide range of viscosity values including the case close to a smectic-nematic tran- 
sition. Thus they predict that bifurcation is normal and the instability is supercritical 
for the planar problem. A similar analysis, by Dubois-Violette and Gabay [53], for 
convection in homeotropic layers heated from below allows for the possibility of 
overstability. In the absence of a stabilizing magnetic field, they predict the onset of 
oscillatory convection and find that p, = 0 and p2 < 0. This means that the instabil- 
ity is subcritical with finite amplitude solutions being possible at thresholds smaller 
than those predicted by the linear theory. These results are also in accord with the 
predictions of Lekkerkerker [46, 491 and the observations of Guyon, Pieranski and 
Salan [48] concerning the occurrence of oscillatory convection and inverse bifurcation 
in homeotropic samples heated from below. Investigating the effect of a stabilizing 
magnetic field Dubois-Violette and Gabay [53] find that b2 remains negative until B 
exceeds a value B,, < BT when it becomes positive and a normal bifurcation is 
expected. 
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Hodson, Barratt and Sloan [54, 551 present more detailed investigations of both 
problems and obtain accurate numerical solutions which satisfy the more realistic 
boundary conditions (3.10). Their results agree qualitatively with those just described 
and it is shown, in all analyses, that the disturbance amplitude is proportional to 
I f l  - pc1'12, for sufficiently small E .  It must be emphasized that the results obtained 
using this perturbative expansion method of solution are only valid provided the point 
(f l ,  a) is sufficiently close to (Pc ,  uc) .  In addition Hodson, Barratt and Sloan [55]  
indicate that the method appears to be invalid in the region of B = B,, where the 
coefficient f12 is not defined. 

Otnes and Riste [56, 57, 581 employ a neutron scattering method to investigate 
experimentally the multicritical behaviour of a homeotropic nematic heated from 
below in the presence of a stabilizing magnetic field. In obtaining a fairly detailed 
picture of the phase diagram in (AT, B) space, they predict a rather more complex 
situation than that presented here and suggest there is some conflict between these 
observations and the conclusions of the previous authors [53,55]. Since some support 
for the conclusions of Otnes and Riste is forthcoming from the work of Knobloch, 
Weiss and Da Costa [59] on magnetoconvection in a Boussinesq fluid, it is clear that 
more detailed analysis and experimentation is required to resolve the situation. 

9. Convective instabilities in cholesterics 
Investigations of convective phenomena in cholesteric liquid crystals are consider- 

ably less numerous than those pertaining to nematics. This is undoubtedly due to the 
complexities introduced into the equations by their inherent helical structure and the 
additional thermomechanical coupling terms allowed by the weaker symmetries 
associated with them. Lehmann [60] first reported a coupling between a thermal 
gradient and orientation, and Leslie [9] provided a subsequent explanation. Leslie 
[9, 611 analyses two possible arrangements for determining the importance of the 
material parameters y 3 ,  CI, and as which are associated with the direct coupling of 
orientation and thermal gradient, while Eber and Janossy [62, 631 describe a method 
for measuring y 3 .  Prost [14] suggests that the extra coupling parameters are relatively 
unimportant. Apart from these studies little attempt has been made to obtain esti- 
mates for these material parameters. 

To avoid complications in the Ericksen-Leslie formulation due to the spatial 
dependence of a uniformly twisted equilibrium configuration, the earlier investi- 
gations [64, 65, 661 confine attention to short pitch cholesterics (P 4 h) and employ 
a linear theory proposed by Martin, Parodi and Pershan [67] and Lubensky [68] to 
examine the onset of convection in horizontal layers. They also consider that the 
anisotropic axis lies in the horizontal plane initially, and that at least one bounding 
surface is a free surface. Assuming the pitch to be independent of temperature and 
ignoring the extra coupling terms associated with cholesterics, Dubois-Violette [64] 
obtains an expression which determines the critical thermal gradient for the onset of 
stationary convection. For a given pitch, it indicates that Pc is now inversely pro- 
portional to h2 rather than h4. This means that for critical temperature differences of 
only a few degrees relatively thick layers (h = 1 cm) and short pitches (10-loop) are 
required. She also demonstrates that the heat focusing mechanism drives the station- 
ary instability with the sign of k, again being crucial. 

Parsons [65] seeks normal mode solutions and employs free-free boundary con- 
ditions to derive a dispersion relation between mode frequencies and their wavevectors. 
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With the assumption that the pitch is independent of temperature, he examines the 
effect of a stabilizing magnetic field applied parallel to the helical axis and effectively 
recovers Dubois-Violette’s result in the limiting case as B tends to zero. Allowing the 
pitch to be weakly dependent upon temperature, Parsons shows that the convective 
instability is oscillatory and describes its driving mechanism in terms of an exchange 
of kinetic energy associated with the destabilizing buoyancy forces and the potential 
energy associated with the elastic restoring forces. In presenting a more detailed 
analysis, Pleiner and Brand [66] allow for the effects of the extra terms peculiar to 
cholesterics. Their inclusion allows additional mechanisms to affect the onset of 
instability, the effects of which are not easy to isolate. However calculations suggest 
that when they are relevant the instability is oscillatory. Finally, Dubois-Violette and 
de Gennes [69], Pleiner and Brand [66] and Ranganath [70] discuss some aspects of 
convection in relation to so called permeation effects. 

Later studies [3 1, 71,721 employ the Ericksen-Leslie theory to investigate convec- 
tion in comparatively long pitch cholesterics. These examine stability with respect to 
a wider class of infinitesimal disturbances which also satisfy the more realistic 
boundary conditions (3.10). Fraser [31] eliminates complications due to the inherent 
helical structure of a cholesteric by considering convection in uniformly aligned 
planar or homeotropic layers which, as Fischer [73] demonstrates, represent possible 
equilibrium configurations between parallel plates provided P 3 4h. Neglecting all 
material parameters peculiar to cholesterics except z, Fraser considers stationary 
perturbation solutions of the form 

fi = (n , ,  n,, O)exp(imx), v = (v,, 0, v,)exp(imx), 9 = sexp(imx) (9.1) 

and 

fi = (0, n , ,  n,)exp(imx), v = ( v , ,  0, v,)exp(imx), 9 = sexp(imx) (9.2) 

for homeotropic and planar layers, respectively, where n,, ‘u, and s are functions of z 
alone. Adopting Jeffrey’s Fourier series method [25] to solve the problem, he shows 
that p,h4 is a universal function and demonstrates that the chirality introduces a 
weakly destabilizing mechanism which is quantitatively similar to the effect of an 
induced twist in twisted nematic layers [36]. 

In a later paper, Fraser [71] considers stationary convection in a uniformly twisted 
long pitch cholesteric. Dafermos [74] argues that a likely equilibrium solution is 

no = (cos6(z), sin6(z), 0),  6 = 6,z/h, T = Ti + Bz, (9.3) 
where 0, is the total twist imposed on the sample, provided z satisfies the inequality 
hz - 71/2 < 8, < hz + n/2. Seeking perturbation solutions of the form in equation 
(6. I), Fraser obtains accurate numerical results by direct integration of the governing 
ordinary differential equations and finds that in all cases convection occurs when 
heating is from below. For fixed values of the inherent twist hr and the imposed twist 
Or,  the equations indicate that BLh4 is a universal function. Results for values of hz 
between 0 and 272 demonstrate a significantly wider range of values for pL than those 
reported for a twisted nematic [36] or uniformly aligned cholesteric [31]. In fact for 
a given pitch the variation of Pc with 8, can be quite remarkable. As for a twisted 
nematic, m/l z tan (6,/2) at threshold. However calculations indicate that this 
relation is not valid for values of hz in excess of 271. 

Barratt and Hodson [72] allow for the possibility of overstability when examining 
the effect of material parameters peculiar to cholesterics upon the onset of convection 
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in homeotropic layers. The flow field is no longer restricted to the xz-plane as in 
equation (9.1) and they consider solutions of the form 

v = (q sin ax, o2 cos ax, v3 cos ax) exp (- iwt), fi = (nl , n2,  0) sin ax exp (- iwt), 

ŝ  = s cos ax exp (- iwt), (9.4) 

where v,, n, and s are functions of z.  Computation of numerical solutions using 
Chebyshev collocation suggests that oscillatory convection occurs in 5 mm thick 
layers when heating is from below and that stationary convection normally occurs in 
1 mm thick layers heated from above. In both cases it appears that threshold values 
are relatively insensitive to changes in a, z, I C ~  and 7c4. However, the effect of direct 
coupling between the thermal gradient and orientation through the parameters a7, a, 
and y3  is strongly destabilizing when heating is from below with a 50 per cent 
reduction in IpLI as the parameters vary from to lo-' in c.g.s. units. The effect 
is somewhat more complicated when heating is from above, but a strongly stabilizing 
influence is demonstrated by a 70 per cent increase in 1 B, 1 as 1 a, 1 and 1 a, 1 increase from 
lop6 to when a7 and a, are of opposite sign. Finally we note that investigations 
by Eber and Janossy [62, 631 suggest that the estimates for a7, a, and y 3  employed in 
calculations by Barratt and Hodson [72] are not necessarily unreasonable. 

10. Some concluding remarks 
The linear theory describing the onset of stationary and oscillatory convection in 

both planar and homeotropic layers of a nematic liquid crystal has received consider- 
able attention and its predictions agree rather well with the somewhat limited experi- 
mental observations so far available. However, it is unfortunate that all the experi- 
mental results relate to the rather unstable nematic material MBBA and it would be 
useful to confirm the predictions using one of the more stable nematic materials now 
available. With the abundance of theoretical results concerning the onset of convec- 
tion in nematic layers, the paucity of experimental investigations is somewhat 
disappointing. For example there has been little or no attempt to confirm predictions 
concerning the effect of magnetic fields on thresholds in planar and homeotropic 
samples or results pertaining to twisted and tilted nematic layers. Experimental 
verification of theoretical predictions would serve as a check on the validity of the 
investigations whereas any discrepancy would suggest that we examine instability 
with respect to more general disturbances than those employed or question various 
assumptions in the analysis. For example, the possible importance of non-Boussinesq 
effects has so far been neglected. A study incorporating these would be useful when 
material parameters vary significantly with temperature, as is the case near a smectic- 
nematic transition, or when relatively large temperature differences are required for 
the onset of convection. 

The rather complex non-linear equations have, as yet, received comparatively little 
attention and those analyses attempted confine themselves to seeking results that 
are only valid close to the threshold value predicted by linear theory. Although 
such calculations support the possibility of inverse bifurcation in homeotropic 
layers heated from below they do not describe how the instability develops beyond the 
vicinity of the linear threshold nor can they predict possible further transitions above 
this threshold. In the presence of stabilizing magnetic fields, homeotropic nematics 
exhibit steady convection preceded by an oscillatory regime due to the existence of 
competing relaxation times. They represent, therefore, a physical system which 
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exhibits multicritical phenomena and a detailed study of this system might well lead 
to a fuller understanding of multicritical behaviour in similar and even more com- 
plicated physical systems. Such an investigation might also provide some under- 
standing of chaotic behaviour in non-equilibrium systems and the development of 
turbulence which is currently of great physical interest. For these reasons more 
sophisticated analyses of the non-linear equations are desirable. 

Although there are a variety of predictions concerning the onset of convection in 
cholesteric materials, there appears to be very little in the literature concerned with 
corresponding experimental investigations. This is particularly disappointing since 
predictions suggest that such investigations could readily determine the relative 
importance of the thermomechanical coupling terms peculiar to long pitch cholester- 
ics. Before more detailed theoretical studies are undertaken it seems desirable to have 
experimental evidence which lends support to the continuum theory utilised in the 
analyses presented so far. 

The author wishes to express his thanks to Professor F. M. Leslie for helpful 
comments on earlier versions of this article. 
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